Are Soil and Water Conservation Technologies a Buffer Against Production Risk in the Face of Climate Change? Insights from Ethiopia’s Nile Basin

Edward Kato, Claudia Ringler, Mahmud Yesuf, and Elizabeth Bryan

The agricultural sector in developing countries is particularly vulnerable to the adverse impacts of climate change. Given Ethiopia’s dependence on agriculture and natural resources, any adverse agricultural effects will pose serious risks to economic growth and livelihoods across the country. Soil and water conservation technologies have been suggested as a key adaptation strategy for developing countries, particularly those in Sub-Saharan Africa, in light of increased water shortages, drought, desertification, and worsening soil conditions.

According to a survey of 1,000 households in the Nile Basin of Ethiopia, more than 30 percent of farmers adopted soil and water conservation measures in response to perceived long-term changes in temperature and rainfall. Although soil and water conservation technologies are generally considered low-cost, they still engender risk for very low-income, risk-averse households, which are prevalent in rural Ethiopia. Thus, it is important to consider the impacts not only on crop yields, but also on risk levels.

This brief is based on a study that investigates the risk implications of various soil and water conservation technologies for crop production in Ethiopia’s Nile River Basin. The analysis identifies technologies that increase and decrease crop production risk—with risk defined as the degree of yield variability—for the purpose of isolating which technologies are best suited to particular regions and agroecological zones.

The results could be used to improve the geographical targeting of soil conservation techniques as part of efforts to promote farm-level adaptation to climate change.

THE USE OF SOIL AND WATER CONSERVATION TECHNOLOGIES IN ETHIOPIA

Soil and stone bunds are structures commonly built to control runoff and thus increase soil moisture and reduce soil erosion. However, constructing continuous bunds to protect broad tracts of land is costly and often difficult, so alternative methods of erosion control are also employed. These include grass strips and contour leveling, sometimes incorporating trees or hedgerows, to reduce runoff velocity and allow water to infiltrate and trap sediments. In addition, waterways help direct precipitation flows along specified pathways in farm fields; and water-harvesting structures, including dams, ponds, and diversions, ensure water availability in the dry season.

Using historical rainfall data from 1951 to 2000, Ethiopia’s woredas (districts) were categorized as having either high or low rainfall. All of the woredas in Tigray and the Southern Nations, Nationalities and Peoples Region (SNNPR) fell into the low-rainfall category, whereas those in the Amhara, Oromiya, and Benishangul-Gumuz regions fell into a combination of both categories. Tigray appears to be the driest region of the five, and Oromiya had the highest average rainfall during 1951–2000.

Overall, the most commonly used soil and water conservation technologies by region are: soil bunds and stone bunds in Tigray, waterways and stone bunds in Amhara, soil bunds and waterways in Oromiya, waterways in Benishangul-Gumuz, and shade trees in SNNPR. Plots in low-rainfall areas have disproportionately more stone and soil bunds than plots in high-rainfall areas, and plots in high-rainfall areas have more waterways and irrigation. The results show clear spatial heterogeneity in the use of soil and water conservation technologies, suggesting that such technologies perform differently according to region and agroecological zone.

THE EFFECTS OF SOIL AND WATER CONSERVATION TECHNOLOGIES ON CROP YIELDS AND PRODUCTION RISK IN AREAS OF LOW AND HIGH RAINFALL

All soil and water conservation technologies considered in this study (that is, stone and soil bunds, grass strips, waterways, trees, and contours) show positive and highly significant impacts on crop output in the low-rainfall areas, but only waterways and trees show strong and significant positive effects in high-rainfall areas. Grass strips show the largest effect on crop yields among the technologies used in low-rainfall areas.

Although most of the technologies show significant positive effects on crop yields in low-rainfall areas, surprisingly, only soil bunds have a risk-reducing effect. This explains why almost 30 percent of the plots employ these techniques, and why other interventions that also have high positive impacts on yields are less common. In areas of high rainfall and high agricultural potential, most of the technologies considered in this study have risk-reducing effects, including soil and stone bunds, grass strips, waterways, and contours. Although both traditional and improved seeds increase average crop production in both low- and high-rainfall areas, they have different effects on production risk. Traditional seed is risk-reducing in both low- and high-rainfall areas, whereas improved seed
is only significantly risk-reducing in high-rainfall areas. These results suggest that, in attempting to adapt to climate change in low-rainfall areas, the choices of soil bunds and traditional seed are appropriate. Improved and traditional seed, stone and soil bunds, grass strips, waterways, and contours all appear to be promising adaptation strategies in high-rainfall areas.

THE EFFECTS OF SOIL AND WATER CONSERVATION TECHNOLOGIES ON CROP YIELDS AND PRODUCTION RISK BY REGION

The effects of soil and water conservation technologies within Ethiopia’s Nile Basin vary not only by high- and low-rainfall area, but also by region (Table 1). The results for low-rainfall areas show that soil bunds are risk-reducing in Amhara and Oromiya, and that stone bunds are risk-reducing in the low-rainfall areas of SNNPR. Grass strips, waterways, and trees are only risk-reducing in SNNPR. Irrigation has no significant risk-reducing effect in any of the low-rainfall areas but shows a significant risk-increasing effect in the low-rainfall areas of Tigray. The risk-increasing aspect of irrigation in low-rainfall areas seems counterintuitive considering irrigation is intended to mitigate the adverse effects of low rainfall. Nevertheless, other studies have suggested reasons for failure of irrigation and water harvesting structures including poor technical design; lack of water, which could be stored in dry years; inappropriate and costly placement; and lack of community sensitization.

The results show that all technologies tend to reduce production risk in high-rainfall areas. Soil bunds are risk-reducing in Oromiya and Benishangul-Gumuz; stone bunds are risk-reducing in Amhara and Oromiya; grass strips are risk-reducing in Amhara, Oromiya, and Benishangul-Gumuz; waterways are risk-reducing in Amhara and Benishangul-Gumuz; trees are risk-reducing in Amhara and Benishangul-Gumuz; contours are risk-reducing in Amhara; and irrigation is risk-reducing in Benishangul-Gumuz.

CONCLUSIONS AND POLICY IMPLICATIONS

The results show that soil and water conservation technologies have significant impacts in reducing production risk in Ethiopia and could be part of the country’s climate-proofing strategy. The results also show that one-size-fits-all recommendations are inappropriate given the differences in agroecologies and other factors. The performance of these technologies is location specific; therefore, programs aimed at promoting soil and water conservation measures as part of a climate change adaptation strategy should take these important differences into account.

FOR FURTHER READING


Edward Kato (e.kato@cgiar.org) and Elizabeth Bryan (e.bryan@cgiar.org) are research analysts and Claudia Ringler (c.ringler@cgiar.org) is a senior research fellow in the Environment and Production Technology Division (EPTD) of the International Food Policy Research Institute (IFPRI). Mahmud Yesuf (mahmundyesuf@yahoo.com) is a resident advisor and research fellow at the Kenya Institute for Public Policy Research and Analysis (KIPPR), Nairobi, Kenya.

This series of IFPRI Research Briefs is based on research supported by the Federal Ministry for Economic Cooperation and Development, Germany, under the project “Food and Water Security under Global Change: Developing Adaptive Capacity with a Focus on Rural Africa,” which forms part of the CGIAR Challenge Program on Water and Food. Through collaboration with the Center for Environmental Economics and Policy in Africa, the Ethiopian Development Research Institute, the Ethiopian Economics Association, and the University of Hamburg, the project aims to provide policymakers and stakeholders in Ethiopia and South Africa with tools to better understand and analyze the consequences of global change—in particular climate change—and to form policy decisions that facilitate adaptation in these countries and beyond.

Financial Contributors and Partners

IFPRI’s research, capacity strengthening, and communications work is made possible by its financial contributors and partners. IFPRI receives its principal funding from governments, private foundations, and international and regional organizations, most of which are members of the Consultative Group on International Agricultural Research (CGIAR). IFPRI gratefully acknowledges the generous unrestricted funding from Australia, Canada, China, Finland, France, Germany, India, Ireland, Italy, Japan, Netherlands, Norway, South Africa, Sweden, Switzerland, United Kingdom, United States, and World Bank.

Printed on alternative-fiber paper manufactured from agriculturally sustainable resources that are processed chlorine-free (PCF).

Copyright © 2009 International Food Policy Research Institute. All rights reserved. Sections of this document may be reproduced without the permission of but with acknowledgment to IFPRI. Contact ifpri-copyright@cgiar.org for permission to reprint.